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Abstract

We show that the Chern—Simons theory for a princigabundle P over a three-dimensional
manifold, withG an arbitrary Lie group, can be formulated as a variational problem defined by local
data on the bundle of connectiofi§P) of P. By means of the theory of variational problems defined
by local data we prove that the Euler—Lagrange operator and the differential of the Poincaré—Cartan
form can be intrinsically expressed in terms of the symplectic form and the curvature morphism of
C(P). These facts and the theory of the global inverse problem of the Calculus of Variations allow
us to prove that there is indeed a global Lagrangian density for these theories. We also prove that
every infinitesimal automorphism &f produces in a natural way an infinitesimal symmetry of the
variational problem defined by the Chern—Simons theory. We therefore conclude that the algebra
of infinitesimal symmetries of these theories is infinite dimensional.
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1. Introduction

In recent years, Chern—Simons theory has received a great deal of attention both from
the physics and mathematics communities, since on the one hand it provides a nontrivial
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instance of a topological field theory whereas on the other its quantum observables lead to
new topological invariantf,26].

The ordinary formulation of Chern—Simons theory is carried out in a principailindle
m : P — X over a three-dimensional manifold. Besides this, the grou@ is always
supposed to be connected, simply connected and compact. Under these conditions the
bundler : P — X is trivial. Therefore given a connectian on P its Chern—-Simons
form CSg) can be regarded as a three-form¥nThis fact allows one to formulate the
Chern—Simons theory for this class of Lie groups as a variational problem by usiag CS(
as a Lagrangian density, sg®). Thus, this formulation covers for instance the case of
SU(n)-bundles but not that df’(n)-bundles.

The task of extending Chern—Simons theory to general compact Lie groups has been
undertaken if7,13]. The techniques employed in these papers are topological rather than
differential-geometric. As a result, the Chern—Simons action constructed there is defined at
the level of singular cochains and its values are only determined up to integers.

Furthermore, to the best of our knowledge, the case of arbitrary noncompact Lie groups
has not been considered in the literature. It follows that for nontrivial principal bundles there
is no formulation of Chern—Simons theory in the framework of the calculus of variations.

One of the aims of this paper is to remedy this situation. We will show that in the general
case we can formulate the Chern—Simons theory as a variational problem defined by local
data on the bundle of connection$P) — X of the principal bundle? — X, we will
follow the arguments expounded|i20,21] Indeed the idea that we shall pursue is a rather
natural one. Since the principal bundtés locally trivial, the Chern—Simons form defines
on any trivialization a Lagrangian density and hence a variational problem. The problem
now is how to “glue” together, in a meaningful way, all these variational problems.

This observation raises the general question as to whether it is possible to give a sensible
definition of a variational problem defined by local data consisting of a family of first
order local Lagrangian densities. This question is important in its own right and the theory
resulting from its solution may be applicable in many other situations. For instance it has
been successfully applied to study particles under the action of electromagnetic fields on
Riemannian manifolds with nontrivial topology, s&8]. Therefore in this paper we shall
begin studying it in general before concentrating on the particular case of Chern—Simons
theory.

Indeed we will see that we can give a geometric description of these variational problems
defined by local data. In order to accomplish this task we will make use of the geometric
formulation[10,12,15,18]Jof the calculus of variations to treat each one of the variational
problems defined by the local Lagrangian densities. Then, the process of piecing together
all these variational problems will be analyzed in the framework of the inverse problem of
the calculus of variations, s¢&,19,22]

It is well known, seq10,12] that the Poincaré—Cartan form plays a prominent role in
the geometric formulation of first order variational problems. In fact, the most important
concepts of this theory, such as extremals, infinitesimal symmetries, Noether invariants,
regularity, Jacobi fields, formal symplectic structure, etc., can be characterized in terms of
the differential of the Poincaré—Cartan form.

Therefore, it seems natural to define a restricted class of local variational problems con-
sisting of those local variational problems such that the family of differentials of the local
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Poincaré—Cartan forms glue together to define a global differential form which, according
to the terminology employed if10], will be called the (formal) symplectic form. In the
same way we will say that these are the local variational problems of symplectic type.

Given a local variational problem, it is well know] that there is a cohomological
obstruction to the existence of a global Lagrangian density. Furthermore, this obstruction
can be represented by a certain De Rham cohomology class which has to be computed on
a case by case basis. However, in the case of our local variational problems of symplectic
type we will prove that the obstruction is given by the cohomology class of the (formal)
symplectic form.

With these results at our disposal, we will prove that the Chern—Simons theory on a
principal bundleP — X can be formulated as a local variational problem of symplectic
type on the bundle of connectiot¥ P) — X. In the papefll] it was shown, for the
first time, thatC(P) carries a natural symplectic form with values on the adjoint bundle
adP — X. Recently, this symplectic structure and the Hamiltonian structure attached to it
have been studied in great detail[j.

We will show that the Euler—Lagrange operator and the symplectic form of the Chern—
Simons local variational problem can be intrinsically expressed in terms of the symplectic
form of C(P) and the curvature morphism defined on the first jet bundé& &). Moreover,
taking into account thaf'(P) is an affine bundle ovek, we will prove the vanishing of
the cohomological obstruction to the existence of a global Lagrangian density for these
theories. The question of finding such a global Lagrangian density is still work in progress
that requires additional research to be carried out and thus will not be addressed any further
in this paper. However this result in itself seems to be remarkable and it may open the road
for future developments in Chern—Simons theory.

Another aspect of the Chern—Simons local variational problem that we shall treat in this
paper is that of infinitesimal symmetries and their associated Noether invariants. Here again
we will adopt a broader point of view. That is, we will study this question not only in the case
of Chern—Simons theory but for any local variational problem of symplectic type. As we
will see, the definition of infinitesimal symmetries is a rather straightforward one. However,
the existence of global Noether invariants is a much more delicate one and it depends on
the vanishing of a certain cohomological obstruction depending only on the infinitesimal
symmetry and the symplectic form of the local variational problem.

With this theory at hand we will prove that the algebra of infinitesimal symmetries of
Chern—Simons theory is infinite dimensional. We will see this by showing that every in-
finitesimal automorphism of the principal bundte— X gives rise, in a natural way, to an
infinitesimal symmetry. Moreover, taking into account the properties of Hamiltonian struc-
ture associated to the natural symplectic fornd'oP), we will prove that all these infinitesi-
mal symmetries admit a global Noether invariant and we will give their explicit expressions.

The organization of the paper is as follows Saction 2 in order to fix our notation, we
collect some well known results of the geometric formulation of the calculus of variations.
Section 3is devoted to the definition and study of variational problems defined by local
data. We also recall the necessary facts about the cohomological obstructions that appear
in the global inverse problem of the calculus of variationsSkttion 4we apply these
results to the particular aspects of the formulation of Chern—Simons theory as a variational
problem defined by local dat&ection 5deals with the problem of defining infinitesimal
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symmetries and Noether invariants for local variational problems. The resulting theory is
applied inSection &o study the infinitesimal symmetries of Chern—Simons theory.

The study carried out in this paper can be extended to manifolds of arbitrary dimension if
we replace the Chern—Simons form with a higher order transgression class. We will address
this question in future works.

We end this introduction by stating the mathematical conventions that will be assumed
in this paper. Manifolds are supposed to be paracompact, connectéfantfe will use
without explicit mention the Einstein summation convention.

2. Preliminaries on the geometric formulation of the calculus of variations

There exists a well established geometric formulation of the calculus of variations based
on jet bundle techniques. This framework has been developed by several authors; the reader
may see for instandd 0,12,15,18pnd the references cited therein.

In order to fix our notation and for the convenience of the reader we proceed in this
section to recall several well known facts of this theory that will be used in the rest of the
paper. Although we shall be concerned with first order variational problems, that is, the ones
defined by Lagrangian densities on the first jet bundle, the structure of the theory requires
us to deal with jet bundles of arbitrary order.

Letn : Y — X be afibered manifold with dilX = n and dimY = n + m. For any pair
of nonnegative integeris< k we will denote byrrf : J¥Y — J'Y the natural projection
between the corresponding jet bundles of local sections:af — X, andr* : JkY — X
will be the projection obtained ag = r o 7§

It is well known[17,18] that every jet bundlg*Y has a contact structure which allows
one to define the so called contact forms/6¥. These forms can be defined by means of
the kth order structure forr@® which is a one-form o*Y with values on the vertical
bundleVJ~1y of the projectionr*~1 : /&~1y — X.Onthe other hand we have @hY the
forms which are horizontal with respect to the projectidn: J¥Y — X. We will denote
by 274, C Qi’j;’ the sheaf of p + ¢)-differential forms on/*Y which arep-contact and
g-horizontal.

Starting from the exterior differenti§l8] one constructs twik-derivations of degree 1,
the vertical differentialf, and the horizontal differential,, which are sheaf morphisms

dy: 200 > @20 4y 208 - .l

Where(n,’§+1)* denotes the direct image of sheaves under the natural projedjib"n:

JHly — Jky.
A first order Lagrangian density is a horizontal form of top degreé'dn While it may
not be globally defined, if we want to associate to it a variational problem then its domain
must be of the fornQn%)*l(U) for some open sét C Y. Therefore the shedfagy of first
order Lagrangians oF is defined as

0,

Eagy = (ﬂé)*gjlny,

wheren = dim X.
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A central concept in the formulation of the calculus of variations for first order La-
grangiang12,15,18]is played by the Euler—Lagrange sheaf morphism

1.n

E:Lagy — (T3).82)7,

which is anR-linear sheaf morphism that sends a Lagrandiaa its Euler—Lagrange form
E(L) on J2y.

Other remarkable geometric objects which are associated to a given Lagrénee
[10,12,17) are the Poincaré—Cartan for@y, and the Legendre forn2, both defined on
J1Y. They are related by the following expression:

O =L—-0AnS82,

whered is the first order structure form.
There is a well known relationship between all these fofin$8], the so called “first
variation formula”

E(L) = (13)* dOL + dy(6 A 21). 1)

This formula allows one to characterize the extremals of a variational problem in two
different ways[1,10,12,18] A local sections of the projectionr : ¥ — X is critical

for the variational problem defined by a Lagrangian densitffand only if it fulfills the
Euler-Lagrange equation

E(L)o j2s =0. 2)
Equivalently,s is critical if and only if
(ipd®p), =0, VDe x(Jy). ()

Let us finish this section by recalling the local expressions of the Euler-Lagrange and
Poincaré—Cartan forms that will be used later. We fix a coordinate pifary’} onU C Y
adapted to the fibratiom : ¥ — X. The Greek indices, 8, ... run from 1 torn and

label the coordinates on the base, Latin indicgs. .. run from 1 tom and label the fiber
coordinates. We have natural charts inducedtinandJ2Y that we denotx®, y’, y;} and

X%, yi, i, yfw}, respectively. If we takg = dx® A - -- A dx” then we will havel = £ - 5

for someL € Cm((n(l))*l(U)) and the local expression of the Euler-Lagrange form is

E(L) = %_i % dvi A
eyt dxe \ay, AT

where gdx® is the total derivative with respect & on J2Y. In the same way the local
expression of the Poincaré—Cartan form is

oL
ay!

o

Op =L+ (dy’ — yfg dxP) A iy axen.
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3. Variational problemsdefined by local data

Local variational problems appear naturally in the study of the inverse problem of the
Calculus of Variations, which deals with the question of deciding whether a system of differ-
ential equations arises as the Euler—-Lagrange equations of some Lagrangian. This problem
has been studied and solved by several authors using different techniques, among them we
may cite[1,2,6,19,22] New ways of attacking these problems have recently appeared, see
[16,23,24]

3.1. Main definitions and properties

In this section we will define and study first order local variational problems in the
framework of the inverse problem of the calculus of variations. Our basic entities will be
Lagrangian densities rather than differential equations. This approach will allow us to give
an equivalent formulation of the inverse problem solely in terms of Lagrangian densities.

We start with the introduction of variational problems defined by local datallLet
{Ly € Lagy(Uy)}aer be a family of local sections ofagy subordinate to an open cover
3 = {Uy}qer Of Y. We denote byE, = {E(Ly)}aer the family of local Euler—Lagrange
forms obtained by applying the Euler—Lagrange morphism to the fafhily

Definition 1. We shall say thafu, £} are the data of a local variational problem if the
family E; = {E(Ly)}qcs defines a global Euler—Lagrange form, that is

E(La)‘UotﬁU/g = E(Lﬁ)anﬂUﬁ7 Va, ﬂ el

Two local variational datdi(, £}, {{{’, £} are equivalent if they define the same Euler—
Lagrange formE; = E . A local variational problem is an equivalence clags, [C}] of
local variational data.

A local variational problem{Ll, £}] is termed global in case there exists a global La-
grangian density. € HO(Y, Lagy) such thatE(L) = E.

Given local variational datél, £} itis clear that the extremals rm‘% w andL,g‘U w
o o ﬂ

coincide, allowing us to give a coherent definition of the global extremals. Moreover, it
is clear that the extremality condition only depends on the equivalence ¢lass}].
Therefore, we may give the following definition.

Definition 2. A local sections of 7 : Y — X is critical for the local variational problem
[{L, L£}]if, foreverya € 1, 51, is critical for the variational problem defined iy, .

The characterizations of the critical sections that we have seen at the end of the previous
section imply the following proposition.

Proposition 1. A local section s is critical for a local variational problepf, £}] if and
only if

Ero j2s=0.
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Equivalently s is critical if and only if

(ipd@y), =0, Yaecl VDe xX(Jy).

Let £ = {L, € Lagy(U,)}aer be a family of sections ofagy subordinate to an open
covertl = {Uy}oer Of Y. We denote byr, = {dO;_}oer the family of differentials of the
local Poincaré—Cartan forms. As a consequence of the first variation formula we have the
following proposition.

Proposition 2. If the family ¥, = {d®L,_}.e; defines a globa(n + 1)-differential form
that is

(d@La)‘UaﬁUﬂ = (d@Lﬁ)‘UaﬁUﬂ’ VO{, ﬂ € I»

then{4, £} are the data of a local variational problem

Proof. If (d@La)lumeﬁ = (d@Lﬁ)wawﬁ the first variation formula implies the equality

E(La)\uo,muﬁ - E(Lﬁ)luamuﬂ = dy[(O A “QLa)\UamU/g — (@A QL5)|UaﬁUﬂ]'

The left hand side of this equation is a one-contéct- 1)-horizontal differential form,
whereas the right hand side is a two-contéct;: 1)-horizontal differential form. Therefore
both sides of the equality must vanish identically. O

We can now give the following definition.

Definition 3. We shall say thatil, £} are the data of a local variational problem of sym-
plectic type if the familyX; = {d©_}.cs defines a global differential form which will be
called the (formal) symplectic form.

Two data of symplectic typgl, £}, {{', L'} are equivalent iff, = ¥, A variational
problem of symplectic type is an equivalence class of local variational data of symplectic

type.

As we have seen above, given two local variational @ataC}, {4, £'}, the first variation
formula implies thatE; = E if and only if ¥, = X . Therefore it follows that two
local variational data of symplectic type are equivalent if and only if they are equivalent as
ordinary local variational data.

3.2. Global inverse problem

We proceed now to recall the main definitions of the theory that leads to the solution of
the global inverse problem of the calculus of variations. We will use the notation and follow
the approach of1,2]. The reader is referred to these papers for a thorough explanation of
the concepts used in this section.

Given ap-form w on JXY it is well known that we can define from it a horizongaform
Vrr1(w) on J&H1Y which is called the horizontalization of. The value ofy;,1(w) at a
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point j*+1s e JA+1y s

Wrr1(@) T Ls) = @Y *((Fs* w) (),

which is well-defined sincéj*s*w)(x) only depends on thek + 1)-jet of the local section
satx € X.

Therefore, for everyk > 0 and 0< p < dim X, we have a morphism of sheaves of
graded algebras

Ck P k+1 0,p
Vi1 (”0)*QJkY - (770 )*ij+1y~

The image of the sheafr’é)*sz’;ky undery;1 will be denoted7;, ;. In what follows we
will also use the notatiow} = (yr(’g)*.Q’;kY and2y? = (ng)*Q’j’;q .

Let us recall, sefl 8], that the pullback of a contact form under the jet prolongation of a
local section vanishes. Thus, taking into account the definitiofy.@f, it is clear that any
contact form is in the kernel of the horizontalization morphisms.

In orderto see the cohomological obstructions that characterize the global inverse problem
we need to introduce two complexes of sheaves. The exterior differential induces a morphism
of sheaves

1
D:j]f—>j,’:+,

characterized by the properti®so D = 0 andD o Y = ;. o d. We denote by 7}, D) the
complex of sheaves

D 4D 1D E
REFRS. — T} l—).Q,?’"—)SZk -0,

where&y is the image sheaf of the Euler—Lagrange morphism({2t d) be the complex
2040ld . gt gnd gl g

wherez ! = Ker(2) ™ 4.212),

Itis a classical factthatthe Poincaré lemmaimplies that the coni@®xd) is aresolution
of the constant shed on Y. However, it is a deep result, proved[i, that the complex
(T, D) is also a resolution of the same sheaf. Moreover, there exists a uniqugmap

Z,Z‘f% — &2 such that the following diagram is commutative:

0—>R—>_; —4>0l s —sorl doap, ezt g
” lil)k llﬁk lwk ltbk le
0 R J—Lgr L. A L 0

That is, we have a morphism of resolutions : ($2;_;, d) — (7}, D). These morphisms
are compatible with the natural inclusio(8y, d) — (£2¢, 4, ) induced by pulling back
forms. Therefore one has a commutative diagram of complexes
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(8, d)> (2, d)> - & (U_,d)& - -

PR

(J1, D)% (J5, D)% - - (I, D)=+

An important consequence of this diagram, which follows from the abstract De Rham theo-
rem, is that the cohomolog/* (¥, R) can be computed by means of any of the resolutions
(827, d).

Let us consider the exact sequence>0H; — 2 £ &5 — 0, whereH,, is the kernel
of the Euler-Lagrange morphisi. We will denote bys : HO(Y, £x) — H(Y, Hy) the
connecting homomorphism of the long exact sequence of cohomology associated with this
short exact sequence. The following theorem, provétiircharacterizes the cohomological
obstructions that appear in the global inverse problem of the calculus of variations.

Theorem 1. LetT € HO(Y, Ex) be a kth order, locally variational operator ont Y

() Tis globally variationathatisT = E(L) for someL € HO(J*Y, .QS’,(”Y), if and only
if 8(T) = 0.

(i) Associated to eachi € HO(Y, £x) there is a closedn + 1)-formwyr in JXY such that
8(T) = 0if and only if the cohomology clager] € H"*1(J*Y, R) vanishes. More
concretelythere is a commutative diagram

HO(JkY, Z7) . H™L(JFY,R) — 0

Xk+1 l 2leH*

HO(Y, E(J,,)) —>— H'(Y, Hgy1) —> 0

where E(J; 1) D &x is the image of the sheaf; ; under the Euler-Lagrange
morphismand[] is the map that takes a closed form to its cohomology class

3.3. Cohomological obstructions for local variational problems of symplectic type

We now apply these techniques to prove our main result in the case of local variational
problems of symplectic type. That is, we give an explicit expression for the cohomological
obstruction which characterizes whether a local variational problem of this type is global.

Theorem 2. Let{i, £} be the data of a local variational problem of symplectic type. Then

1. 2 € ZBEY(J1Y), whereZ i (J1Y) denotes the De Rham + 1)-cocycles

2. The variational problenf{sl, £}] is global if and only if the cohomology clags ] €
H"t1(J1lY, R) vanishes

3. If [X,] = Othen there exists € HO(Y, Lagy) such thatE(L) = E; and ¥, = dO);.

Proof. The first part is obvious from the definition &f..
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We now proceed to prove the second assertion. It is clear that the Euler—Lagrange form
Er € HO(Y, Ex) is a locally variational operator. Therefore the hypotheséEhebrem 1
hold.

Let us consider the commutative diagram

0 zp Qp —2> zp+l 0

N

0—>Hy—> Q" 2>, 0

The pullback of formgz)* : 25" — 25" induces a natural inclusion &b in £. Thus

the obstruction clas& E ) for the existence of a global Lagrangian is determined by the
cohomology class of any € HO(Y, Z3 1) such thatyo(w) = (73)*(Er). SinceZ; ™ is

a quotient sheaf, to give is equivalent to finding an open covdr= {U,}4e; Of ¥ and
differential forms®,, € 2/ (U,) such that

), =40y, VYael,
and
@Oy, = AOp) |y, Ve BEL
The conditiony2(w) = (ng)*(EL) is fulfilled if and only if

E(2(0,)) = (19)*(Egy,)-

If we take as®,, the local Poincaré—Cartan foréy, , = L, — 6 A §2;, itis clear that the
family {©1, }«c/ fulfills the second condition. On the other haiig, is horizontal and the
horizontalization o A §2;, vanishes since it is a one-contaethorizontal differential
form, hence

Y2(0L,) = Y2(La) = (19)*(La),
which in turn implies
E(W2(0L,)) = E((73)*Le) = (73)* (E(Ly))
as required. Hence we may take= X', as we wanted to prove.
The last part of the theorem follows immediately from the previous ones. O

Remark 1. Let us note that sincélY is a deformation retract df the obstruction to the
existence of a global Lagrangian livesiff+1(Y, R).

If we take into accounProposition lwe can now characterize the critical sections in
terms of X ..

Proposition 3. A local section s is critical for a local variational problefffsl, £}] of
symplectic type if and only if

(ipZr),, =0, YD eX(U).
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4. Chern-Simonstheory

Let G be an arbitrary Lie group and |&%, ) : g ® g — R be an Ad-invariant metric in
the Lie algebra o5, and letw be a connection on th@-bundler : P — X with curvature
2. Let (2% A £2¢) be the Chern—Weil four-form associated with the met#ic). This
form is the lifting of a four-form onX that we continue to denote y2* A £2%). The
Chern—Simons form is a primitive ¢f2* A £2°) on P, more precisely we have the following
definition.

Definition 4. The Chern—Simons form of the connections the three-form

CS() = (A 2°) — Ho Ao, 0]) € 23(P).

We now state the principal properties of the Chern—Simons form; the proofs can be found
in [8].

Proposition 4. The Chern—-Simons form has the following properties

1. dCSw) = (£2° A £2¢).
2. R;‘,CS(a)) = CSw), for everyg € G.
3. If ¢ : P — Pis agauge transformation with associated mappingP — G, then

9*CS(w) = CS(w) + d(Ad,-1 0 A B) — 2(0 A [0, 8]),
whered = $*6 and6 is the Maurer—Cartan form of G

4.1. The bundle of connections and the Chern—Simons morphisms

The bundle of connectionS(P) of a principal bundleP? — X was introduced for the
first time in the papef9] where its basic properties were studied. The natural symplectic
structure ofC(P) was introduced later ifiL1]. A more recent exposition of the geometry
of C(P) with a particular study of the symplectic structure and its attached Hamiltonian
structure can be found {5].

In order to establish our notation let us recall the definition and main properties of the
bundle of connections. The reader may confa]lfor further details.

Let us recall that given a princip&-bundler : P — X one has the so called Atiyah
sequence, sg8], which is the exact sequence of vector bundles aver

0— adP — TgPE“)TX—> 0,

where adP is the adjoint bundle an@; P is the vector bundle obtained as the quotient of
TP under the natural action of the Lie groap

There exists a natural bijection between connection® @md splittings of the Atiyah
sequence. Therefore the bundle of connections C(P) — X is defined as the affine
sub-bundle of Horir X, T; P) modeled on the vector bundle HgmX, ad P) and determined
by all theR-linear mappings, : T, X — T¢ Py such thatr, o w, = ld7, x.
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Let us denote by‘té : J1C(P) — C(P) the one-jetbundle of : C(P) — X.LetU c X
be a trivializing open set aP with trivializationgy : Py =>U x G and letsy : U — Py
be its corresponding local section. We denote &léB); = (7)~1(U).

Definition 5. The Chern—Simons morphism associated with the trivialization Py = U x
G is the mapping

3
C *
JCP)leiny = N\ T*Xu,
defined by C$(jlw) = s} (CS(w,)) € A3 T*X.

Remark 2. CSy : 11C(P)|C(p)U — /\3 T*Xy is a fibered morphism ovéy C X. Thus,
CSy is a local section of the sheaf of Lagrangiaiegcp).

In order to give the local expression of a Chern—Simons morphism, let us remember
that if oy : Py = U x G is a local trivialization on an open sét ¢ X endowed with
local coordinategx’}, and D, are theG-invariant vector fields orPy defined by a basis
B={B,..., By} ofthe Lie algebrg, then we can define ofi( P)y the functionsA¢ by
means of
a ad
H, (—) = — — A¥(w)Dy, e (U, C(Py),
ox? ox?
whereH,, is the horizontal lift associated with the connectiahen, se§l 1], the functions
', A%} define alocal fibered coordinate systen(®) ;. We shall denote b’ A?, A;’fj}

the coordinate system induced th(P)|C(p)U.
From now on we suppose thatis a manifold of dimension 3.

Proposition 5. The local expression o€Sy, with respect to the coordinate system
{xi, A, A% },is CSy = LG - dx® A dx? A d® with

LG =M AYAL 4+ 3CE,AYAY A (By ® Bp),

WhereCfiV are the structure constants of the Lie algelgraith respect to the basis.

Proof. Let us denote byw®} the dual basis of the basis 6finvariant vector field$D,}.
Now the expression of a connection Bnisw = (A dx' + %) ® Dy, Where, for shortness,
we have writterA? instead ofA¥ (w). Therefore

CSy o jlo = (wu A 2§) — Elou Aoy, 0ul)

with wy = s} € 21(U, g). Taking into account thaby = s},0 = A% dx’ ® By, one has

2f = (1/2)F dx' A dx/ ® By with Fff = AS, — A7, + C5;, A A} If we substitute this
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result in the expression of GS jlw we obtain

CSy o jlw = ((A%dx' ® B,) A ((1/2)(A’S — A’S +ChLA%AY) dx/ A dit @ Bp))
— 3((Af dx' ® By) A (A} dx/ @ By, (A} dx* © B,)]
= (AZAL  + 3CB AYA" A}) (B ® Bg) di' A di/ A dik,

which finishes the proof. O

We are interested now in comparing the Chern—Simons morphisms associated with two
different local trivializations ofP. As a consequence of part 3@foposition 4one has the
following proposition.

Proposition 6. Let ¢y and gy be two local trivializations oft : P — X. For every
w € (U NYV,C(P)) one has

(CSy — CSy) 0 j'w = diAdy , ;0u A Buv) — §(Buv A [Buv, Buv]),

wheregyy is the transition functiopfyy = g{;,0 andé is the Maurer—Cartan form of G

Corollary 1. OnC(P)yny, with respect to the coordinate systéx, Af, A"‘ } one has

1
peol) — écﬁvefe" > (By ® Bp),

Cs _ ik u B m
E — L7 =¢€ (A pMG + A; 3k(

where 6y, Py € C*(U N V) are the functions determined loyy = 6 dx' ® B, and

Adg 1 (By) = pj; Ba, respectively
4.2. Chern—-Simons theory as a local variational problem

In what follows we will see that the Euler-Lagrange operators associated with the
Chern—Simons morphisms agree in the intersection of their domains of definition.

Lemma 1. Let E : Lagcp) — (”0)* be the Euler—Lagrange morphisms. On

C(P)ynv one has

JZC(P)

E(CSy) = E(CSy).
Proof. Let L = CSy — CSy, thenE(CSy) — E(CSy) = E(L). In the coordinate system

{xl, A¥, A? }, one hasL = Ln, with £ = £§°— £5% andn = dx! A dx? A dx®. The
expression of the Euler—Lagrange operator in this system of coordinates is

O LRI (KT
~ oar T dek \aax )| T T

But if we take into accountorollary 1, we obtain
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L e D

— =K (pl6Y)(B, ® B,),
IAY axk T

d L

d . g
Ok (W) = @(6”"0597@;1 ® B)) = G'JkW(péf@f')(Bu ® By).
i,k

thus E(L) = 0 and we conclude the proof. O

According to the definition of a local variational problem giverDigfinition 1we have
thus proved the following proposition.

Proposition 7. Letiy = {U,}uecs be a cover of X by open trivializing setsof P — X,
and lettl = 7~ 1(8ly) be the corresponding cover 61 P). Let £CS = {CSy, }aer, ONe has
1. {4, £°S} are the data of a local variational problem
2. The clasCS(P) = [{U, £°S}] does not depend on the chosen caver

Hence, we can give the following definition.

Definition 6. We shall say that CH) is the local variational problem for the Chern—Simons
theory of the bundler : P — X.

Moreover, one can prove the following theorem.
Theorem 3. The local variational problenCS(P) is of symplectic type

Proof. We will use the same notation as in the proofLeimma 1 Thus, it is enough to
prove that @; = 0. But, with respect to the local coordinate system, one has

oL

o
i,k

=L+ X pli0" (B, ® B,)(dAY — AT, dx") Aiynen.

=L+

(dA;x — Aqur d)Cr) N ig/axkn

Hence
dO, =dL + €*(B, ® B,){d(pli0)) A (dAF — A%, dx") Aiypun — pl6) dAT, A 1}
=dL — é%(B, ® B,) {%k(/ﬁ@}) dAf + o6} dA?fk} AT
But
dL =dC An=é€X(B, ® B,) {pgey dA7; + 8%@597) dA?} A,

therefore @, = 0. O
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The bundle of connection§(P) has a symplectic structu®, € 22(C(P), 7*adP)
with values in the adjoint bundle & which is just the two-form induced o@i(P) by
the curvature two-form of the canonical connection B — C(P) by means of the
identificationC(P) ~ J'P/G, see[5,11]. Therefore, ifpy : Py U x G is a local
trivialization of P and U is coordinated by{x'}, the expression of2, in the coordinate
system{x’, A%} induced onC(P)y is

22 = (dAY Adx' + 3C5, AR A} dx/ A di¥) @ Dy,

where {D,} is the basis ofG-invariant vector fields onPy, and hence a basis of
(C(Py, 7*ad P), associated with the basis of the Lie algebrehosen to construct the
coordinate systerfi’, A%}. For further details se®,11] andSection 6of this paper.

On the other hand, the curvature morphism is the fibered mappingXover

2
2:J'cp) > \T*X ®adP

given byQ(j}w) = (£2%),. Hence its local expression is
2=3Fdd' Ady/ @ Dy = (A%, — AT + Co, AL AY) di' A dx/ @ D

The symplectic structuré2, of C(P) and the curvature morphis#® will allow us to
intrinsically express the Euler-Lagrange fofipcs € 24(J2C(P)) and the form¥ .cs €
24(J1c(P)y) associated with the local variational problem of symplectic typeRJ.S(

Theorem 4. One has
Ecs = 2(R2) " (74)* 22 A £2), T pcs = (W) * (22 A 22).

Thatis X .csisthe pullback ta/1C(P) of the four-form induced on the bundle of connections
C(P) by the Chern—Weil four-form of the canonical connection

Proof. Letuschoose alocaltrivializatian, : Py 5UxG.Aswe have seen iAroposition
5, with respect to the local coordinate systéth A% A;’fj} onehasCg = ESS- n with

l' )
£S5 = eijk(A;?‘Af’j +3CH AZAY A (B, ® Bp).

andn = dx’ A dx/ A dxt.
Therefore, we have

aLsS d [oacss
E.s={1—-YU _ ~ v dA% A
£ { DAY dik (aAgk P

=e*(By ® Bp) (A} ; — AL, + CBLAY A}) dAZ Ay

=(By ® B@Fﬁ dA% Adx' A dx/ A dit

, 1 .
= 2<(dA§?‘ Adx' @ Dy) A (EFjﬁ dx/ A dif ® Dﬁ>>
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if we take into account the local expressionsiaf and 2 we finish the proof of the first
part.
In the same way

aﬁgs B B YA
Ocsy = CSy + —5=(dAy — A, dx") Adyyaeim
Ak,j
= CSy + €™ (Bo ® By) AT (AL — AL, d') Ay,
— CSy + € (By ® By) AX(AAL A igyein — AL )

=X (B, ® Bg)AY <3CﬁvA“Akn +dA? A 13/3x,n>
Taking the exterior differential, after a little computation, bearing in mind thaj is
Ad-invariant, we obtain

dOcs, = (By ® Bg) dA% A dx’ A (dA’?‘ Ady + C AR AN A di)
= ((dAY A dx' ® Do) A {(dAf A dxd + CFL A% AY di/ A di¥) ® D)),

and the local expression @f, allows us to finish the proof. O

The expression found for the Euler—Lagrange operator allows us to characterize the
critical sections.

Corollary 2. A connectionw € I'(X, C(P)) is critical for the variational problenCS(P)

if and only if it is zero the component of its curvature form corresponding to the subspace
of g where(#, ) is nondegenerate. f, ) is nondegeneratev is critical if and only it is a

flat connection

The inverse problem of the Calculus of Variatiofifieorem 2 allows us to prove the
following corollary.

Corollary 3. There exists a global sectidiS € HO(C(P), Lage(p)) such thatE(LCS) =
E,csand ¥ .cs = dOcs.

Proof. Sincen : C(P) — X is an affine bundle an& has dimension 3 it follows that
H*(C(P),R) = 0, therefore K cs] = 0. Hence, applyingrheorem 2we obtain the
result. O

Remark 3. The local solution of the inverse problem of the calculus of variations provides
us with an algorithm which determines only the local expression of a Lagrangian whose
Euler—Lagrange equations are the given ones. When applied in this case we recover the
Chern-Simons morphism @Sof the open set in which we are working on. Therefore

the inverse problem of the calculus of variations does not help us in finding the explicit
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expression of.©S. According to the best of our knowledge, the existence of the global
LagrangianZ S is not found in the literature.

5. Infinitesimal symmetries and Noether invariants

The topic that we will address in this section is that of infinitesimal symmetries and
Noether invariants of variational problems defined by local data.

5.1. Global variational problems

An infinitesimal symmetry of the first order variational problem defined by a Lagrangian
densityL is a vector fieldD € X(J1Y) such that the Lie derivative of the Poincaré—Cartan
form ©, with respect taD is an exact form, that is

LD@L = —an.

In that case, we havig) d®; = —dwp with wp = ip®; + np. Noether’'s theorem can
now be formulated as follows. Letbe a critical section; taking into account the second
characterization of critical sections giventiq. (3) we have

0= (ipdOpL)|,; = —d(@p)) .

That is,wp is a closedn — 1)-form along js(X) c J1Y, or what amounts to the same,
(jLs)*wp is a closed differential form oi.

From its definition it is clear thabp is determined up to the addition of any closed
(n — 1)-form on J1Y. The Noether invariant associated with the infinitesimal symmetry
is the coset ofn — 1)-differential forms

wp =ipOrwp + np + Z’E)_Rl(JlY),

whereZp 2t (J1Y) is the space of De Rham — 1)-cocycles or/'Y.
5.2. Local variational problems of symplectic type

In what follows we will consider the problem of defining infinitesimal symmetries and
their associated Noether invariants for local variational problems of symplectic

type.

Definition 7. Let {i, £} be the data of a local variational problem. We shall say that
D € X(J'Y) is an infinitesimal symmetry of the variational problefti[ £}] if, for every

ael, D|( 11 is an infinitesimal symmetry of the variational problem associated with
710 o

L. Thatis, one has
Lp®, = —dnob

with ©, = O, andy € (13).21, (Ua).
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The local Noether invariant associated with the infinitesimal symmBton U, is the
coset

o) = ipOu + 0% + (T 215 (Ua).

whereZ’J’jYl is the sheaf of De Rhartz — 1)-cocycles ory1Y.

One has the following proposition.

Proposition 8. If D € X(Y) is an infinitesimal symmetry of the local variational problem
associated withil, £}, then{w?,}4c; defines an element

anl
[wp] € HO (J1Y, ﬁﬁ) .
Zle

Proof. Itis clearthatp d®, = —dw?,. Since the variational problem is of symplectic type
we have

(d@La)‘UmﬂUﬁ = (d@Lﬁ)‘UomUﬁ’ VO{, :3 € I»
and this implies

d(o} — wllg))luamuﬂ =0.

That is (0% — a)’f,),umﬂ € Z’}l—yl((ncl,)*l(Ua) U (73)~1(Uy)). Taking into account that

(rg) "4l is a cover of/1Y the proof is finished. O

If there exists a global Noether invariant then it is clear from the definition that it is
defined up to the addition of any closéd— 1)-form onJ1Y.

Definition 8. Let D € X(Y) be an infinitesimal symmetry of the local variational problem
[{U, £}]. The element

Qn—l
[wp] € H® (JlY, ;1’”;)
Z]1Y

is called the virtual Noether invariant associated withWe shall say thab admitswp €

HO(JY, 2" 1) as a global Noether invariant if its imagetP (J1Y, 277/ 2" 1 is [wp)].

Noether’s theorem is also valid for symmetries which admit a global Noether invariant

Theorem 5. If D is an infinitesimal symmetry with a global Noether invariant, then for
every critical section s one has

d(wD) |j1s = 0,

thus(jls)*wp € 2" 1(X).
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Proof. OnU, one haspd®, = —dw}, = _d“)Dm . Sinces is critical the result follows
immediately fromProposition 1 O

The following proposition is important since it allows us to manage infinitesimal symme-
tries and their Noether invariants in a practical way. First we give a useful representation of
the virtual Noether invariant in terms of an ordinary differential form rather than a section
of a quotient sheaf. As a consequence we are also able to exhibit an explicitly computable
criterion for the existence of global Noether invariants.

Proposition 9. LetD € X(Y) be an infinitesimal symmetry of the local variational problem
[{&L, £}]

1. Thevirtual Noetherinvariarito p] associated with D getsidentified with = —ip X €
HOUY, Z8,,) = Zhe(J'Y).

2. D admits global Noether invariants if and only if the cohomology cldgsY,] <
H"(JY, R) vanishes. That jsf and only if there existaop € 2" 1(J1Y) such that
ip X = —dwp. In that casethe set of global Noether invariants associated with D is
the class

tp = wp + ZERHJY),
thatis ¢p € 2" 2(J1Y)/ZERH(JLY) =~ BLo(J1Y).
Proof. The De Rham resolution afiY gives us the short exact sequence of sheaves

0zt ol zn o

Jly Jy Jly
Therefore.(z’}l‘;/z’}l‘yl ~Z"y and wp] = {0 }aer gets identified with

{dw%}ael =—{ip dO}aer = —ipXr,

which proves the first part.
If we take cohomology in the above short exact sequence and we take into account that

ijyl is an acyclic sheaf, we obtain an exact sequence

0— HUYy, 2 ) — HO(ItY, 2 ) — HOUJMY, z’;ly)i HY(J'Y, 2 ) — .

Hence it is clear thaD admits a global Noether invariant if and onlysifi;, >,) = 0. By
the abstract De Rham’s theorg&b], we have

HY'(JY, 2% ~ H'(J'Y.R),
andé(ip X ) gets identified with the assignment of the cohomology class
lipZc] € H'(JIY, R).

The rest of the theorem is a straightforward consequence of the cohomology exact
sequence. O



C. Tejero Prieto/ Journal of Geometry and Physics 50 (2004) 138-161 157

Remark 4. The obstruction to the existence of global Noether invariants livég'itY, R).

We can now give a cohomological characterization of the infinitesimal symmetries and
in particular of those which admit global Noether invariants.

Theorem 6. Given a vector field € ¥(J1Y) one has
1. Dis an infinitesimal symmetry of the local variational problgim, £}] if and only if
ipXr € H'(J'Y. 2%,) = Zhr(J'Y).
Equivalently D is an infinitesimal symmetry if and only if
LpX¥;=0.
2. D is an infinitesimal symmetry that admits global Noether invariants if and only if the

cohomology clasgp ;] € H"(J'Y, R) vanishes

Proof. If D is an infinitesimal symmetry the previous proposition implies thaf is a

closed form. In order to prove the converse statement we can assume, without changing
the class of the variational problerftd, £}], that & is a good cover of. This is not a

real restriction since on every (paracompact) manifold we can construct a good cover out
of the geodesically convex neighborhoods associated with a Riemannian metij].see
Therefore every open s&t, is contractible and as a consequence there exstsuch that

—da)"b = (iD2£)|Ua = iD d@Lw

which implies thatD is an infinitesimal symmetry. The equivalence with the condition
LpX = 0 follows from the fact that’; is closed.

The second part of the theorem is a direct consequence of the first one and the preceding
proposition. O

We end this section with a theorem that gives the structure of the set of infinitesimal
symmetries.

Theorem 7. One has that

1. The se®D of infinitesimal symmetries of a local variational problem is a Lie subalgebra
of X(J1y).

2. The setDy of infinitesimal symmetries which admit a global Noether invariant is an
ideal of D, that is

[D, D] C Do.

Moreover by sending an infinitesimal symmetry D to the cohomology dlask €
H"(JY,R) of its virtual Noether invariant we get a natural inclusion of the quotient
Lie algebra

D
— C H'"JY,R) ~ H"(Y,R).
Do
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Proof. The first statement follows immediately from the previous theorem just by taking
into account the well known identit[p, p,] = [Lp,, Lp,]-
On the other hand, iD; and D2 are two infinitesimal symmetries, we have

‘S;:[DlvDZ] = _i[Dl»DZ] 2= _[iDlv LDz]Zﬁ = LDziDlz[: = d(iDziD12£)~

Moreover, it is clear that the sum and product with a scalar preséhyes O

Corollary 4. Let D1 and D> be two infinitesimal symmetries belongingg, then
W[D1,D;] = iDpiD1 2L

is a global Noether invariant fofD1, D>].

6. Symplectic structure of C(P) and infinitessimal symmetries of Chern—Simons
theories

In this section we will see that the symplectic structur€6f) allow us to associate to
every G-invariant vector field orP an infinitesimal symmetry of the variational problem
CS(P). Proving thus, that the Lie algebra of infinitesimal symmetries of Chern—Simons
theories is infinite dimensional. In order to see the connection between the symplectic
structure ofC(P) and the infinitesimal symmetries of Chern—Simons theories we briefly
recall the relationship between the bundle of connectionsC(P) — X and the one-jet
bundlen(l) : JLP — P of the principal bundler : P — X, a complete exposition can be
found in[5,9,11]

As is well known[14], every automorphisnp € Aut P of the principal bundler :

P — X acts on the connections &f, producing a diffeomorphism® : C(P) — C(P).

If D e I'(X,autP) is a G-invariant vector field onP, then it is called an infinitesimal
automorphism of?, since its uniparametric grouyp,} acts by automorphisms a@f. Thus,
{z7} is a uniparametric group of diffeomorphisms ©fP) whose infinitesimal generator
will be denoted byD¢. In this way the natural action of the automorphisms Rudf the
principal bundle on the connections Bfinduces a Lie algebra morphism

autP — X(C(P)), D — D°.

The groupG acts freely on the right o' P and the quotient manifold™ P/ G exists and
gets identified with the bundle of connectiafi&P), sed9], in such a way that the following
diagram is commutative:

Jip—1>-c(P)

- l lﬁ

P— X

Thusg : J1P — C(P)is a principalG-bundle, wherg is the natural quotient map. More-
over, J1P is isomorphic, as a principas-bundle, to the pullback oP to C(P), that is
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JIP ~ 7*P = C(P) xx P. It follows that we can identify the adjoint bundle &8P of
g:J'P — C(P) with 7*ad P.

On the other hand, every automorphigne Aut P lifts in a natural way to an automor-
phisme?! : J1P — J1P, and the following diagram is commutative:

1
Jip—~—=jip

| ls

c(P) -~ c(P)

Moreover, if D € autP and we denote by € X(J1P) its prolongation to/1 P, thenD is
g-projectable and its projection i3°.

The structure forn® of J1P turns out to be a principal connection on the bungle
JLP — C(P).#is called the canonical connection. The symplectic fé2pof C(P) is the
two-form with values in ad1P ~ 7*ad P induced by the curvatur@? of the canonical
connection, and ever® € autP fulfills L6 = 0.

If ¢ € Aut P, then one hag! 6 = 6 and thus evenp e I'(X, autP) satisfiesL 6 = 0.
As the following lemma shows, this property of tGeinvariant vector fields will be crucial
for obtaining infinitesimal symmetries of Chern—Simons theories.

Lemma2. Let# : P — X a principal bundle and le® be a principal connection oi.
Let D € autP with 7-projectionD € X(X). If L ;& = Othen

ipf2, = —dV (DY),

where$2;, € 22(X, adP) is the two-form induced by the curvature formaafD? is the
vertical component of the vector fieltwith respect tég andd" is the covariant differential
induced by®w on the sections aid P.

Proof. On P one has

=—dipd — [0, i50],

where we have taken into account tiigj = 0. SinceD is G-invariantd (D) € C®(P, g)

is Ad-invariant. Therefore it can be identified with a sectibh € (X, adP) which

is the vertical component of the vector field with respect to the connection
. Bearing in mind the expression of the covariant derivative in terms of differential
forms in 2°(P, g)p, that is the ones which are horizontal and Ad-equivariant, we
obtain

i52° = —(dipd + [, &(D)]) = —d®(@(D)),

and we conclude just by taking the one-form Brwith values in ad® that corresponds
toit. O
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If we apply this lemma to the canonical connectioon the principal bundle : J1P —
C(P) we can prove that for every vector fieldl € autP the vector fieldD¢ € X(C(P)) is
an infinitesimal symmetry of the Chern—Simons theory.

Given D € autP, we will denote byD? = 4(D) the vertical component, with respect to
the canonical connectiah of the one-jet prolongation of the vector fieldd Under these
conditions we have the following proposition.

Proposition 10. Let D € autP, then

1. D¢ € X(C(P)) is an infinitesimal symmetry of the variational probl&&(P). That
is, D¢ belongs to the Lie algebr®(CS(P)) of the infinitesimal symmetries which are
w-projectable

2. D admitswpc = Z(ﬁé)*(bv A §22) as a global Noether invariant. That,idD°¢ <
Do(CS(P)).

Therefore we have a Lie algebra morphism
autP — Do(CS(P)), D — D¢,

whose kernel coincides with the centegof

Proof. If we denote byD¢ e X(J1C(P)) the one-jet prolongation ab°, then we have
ipe T pes = ipel(7g)* (22 A 22} = (7g) *lipe (22 A 22)} = 2(75)* {(ipe 22 A 22)}.
By the previous lemmép. 2, = —d" DV and thus
i P pcs = —2(T3)*{(dV D A 22)) = —2(7)* (DY A 22),

where the last equality is a consequence of the Bianchi idehYity, = 0. Regarding the
last assertion, iD¢ = 0 itis clear thatD € autP is w-vertical.

Finally the proof that the kernel coincides with the centeg &f rather straightforward,
seg[11]. O

Remark 5. Therefore, the algebr®y(CS(P)) of the infinitesimal symmetries of CBJ

which admit global Noether invariants is infinite dimensional. Moreover, the Noether in-
variants associated with the representation of the gauge vector fields are not zero, because
if D e gauP thend(D) e gauJlP gets identified withD itself via the natural inclusion

gauP — gauJlP and thusD’ = D, which implies that the global Noether invariant is

wpe = 2(AZ*(D A 7).
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