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Abstract

We show that the Chern–Simons theory for a principalG-bundleP over a three-dimensional
manifold, withG an arbitrary Lie group, can be formulated as a variational problem defined by local
data on the bundle of connectionsC(P) ofP . By means of the theory of variational problems defined
by local data we prove that the Euler–Lagrange operator and the differential of the Poincaré–Cartan
form can be intrinsically expressed in terms of the symplectic form and the curvature morphism of
C(P). These facts and the theory of the global inverse problem of the Calculus of Variations allow
us to prove that there is indeed a global Lagrangian density for these theories. We also prove that
every infinitesimal automorphism ofP produces in a natural way an infinitesimal symmetry of the
variational problem defined by the Chern–Simons theory. We therefore conclude that the algebra
of infinitesimal symmetries of these theories is infinite dimensional.
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1. Introduction

In recent years, Chern–Simons theory has received a great deal of attention both from
the physics and mathematics communities, since on the one hand it provides a nontrivial
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instance of a topological field theory whereas on the other its quantum observables lead to
new topological invariants[8,26].

The ordinary formulation of Chern–Simons theory is carried out in a principalG-bundle
π : P → X over a three-dimensional manifoldX. Besides this, the groupG is always
supposed to be connected, simply connected and compact. Under these conditions the
bundleπ : P → X is trivial. Therefore given a connectionω on P its Chern–Simons
form CS(ω) can be regarded as a three-form onX. This fact allows one to formulate the
Chern–Simons theory for this class of Lie groups as a variational problem by using CS(ω)
as a Lagrangian density, see[8]. Thus, this formulation covers for instance the case of
SU(n)-bundles but not that ofU(n)-bundles.

The task of extending Chern–Simons theory to general compact Lie groups has been
undertaken in[7,13]. The techniques employed in these papers are topological rather than
differential-geometric. As a result, the Chern–Simons action constructed there is defined at
the level of singular cochains and its values are only determined up to integers.

Furthermore, to the best of our knowledge, the case of arbitrary noncompact Lie groups
has not been considered in the literature. It follows that for nontrivial principal bundles there
is no formulation of Chern–Simons theory in the framework of the calculus of variations.

One of the aims of this paper is to remedy this situation. We will show that in the general
case we can formulate the Chern–Simons theory as a variational problem defined by local
data on the bundle of connectionsC(P) → X of the principal bundleP → X, we will
follow the arguments expounded in[20,21]. Indeed the idea that we shall pursue is a rather
natural one. Since the principal bundleP is locally trivial, the Chern–Simons form defines
on any trivialization a Lagrangian density and hence a variational problem. The problem
now is how to “glue” together, in a meaningful way, all these variational problems.

This observation raises the general question as to whether it is possible to give a sensible
definition of a variational problem defined by local data consisting of a family of first
order local Lagrangian densities. This question is important in its own right and the theory
resulting from its solution may be applicable in many other situations. For instance it has
been successfully applied to study particles under the action of electromagnetic fields on
Riemannian manifolds with nontrivial topology, see[20]. Therefore in this paper we shall
begin studying it in general before concentrating on the particular case of Chern–Simons
theory.

Indeed we will see that we can give a geometric description of these variational problems
defined by local data. In order to accomplish this task we will make use of the geometric
formulation[10,12,15,18]of the calculus of variations to treat each one of the variational
problems defined by the local Lagrangian densities. Then, the process of piecing together
all these variational problems will be analyzed in the framework of the inverse problem of
the calculus of variations, see[1,19,22].

It is well known, see[10,12], that the Poincaré–Cartan form plays a prominent role in
the geometric formulation of first order variational problems. In fact, the most important
concepts of this theory, such as extremals, infinitesimal symmetries, Noether invariants,
regularity, Jacobi fields, formal symplectic structure, etc., can be characterized in terms of
the differential of the Poincaré–Cartan form.

Therefore, it seems natural to define a restricted class of local variational problems con-
sisting of those local variational problems such that the family of differentials of the local
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Poincaré–Cartan forms glue together to define a global differential form which, according
to the terminology employed in[10], will be called the (formal) symplectic form. In the
same way we will say that these are the local variational problems of symplectic type.

Given a local variational problem, it is well known[1] that there is a cohomological
obstruction to the existence of a global Lagrangian density. Furthermore, this obstruction
can be represented by a certain De Rham cohomology class which has to be computed on
a case by case basis. However, in the case of our local variational problems of symplectic
type we will prove that the obstruction is given by the cohomology class of the (formal)
symplectic form.

With these results at our disposal, we will prove that the Chern–Simons theory on a
principal bundleP → X can be formulated as a local variational problem of symplectic
type on the bundle of connectionsC(P) → X. In the paper[11] it was shown, for the
first time, thatC(P) carries a natural symplectic form with values on the adjoint bundle
adP → X. Recently, this symplectic structure and the Hamiltonian structure attached to it
have been studied in great detail in[5].

We will show that the Euler–Lagrange operator and the symplectic form of the Chern–
Simons local variational problem can be intrinsically expressed in terms of the symplectic
form ofC(P) and the curvature morphism defined on the first jet bundle ofC(P). Moreover,
taking into account thatC(P) is an affine bundle overX, we will prove the vanishing of
the cohomological obstruction to the existence of a global Lagrangian density for these
theories. The question of finding such a global Lagrangian density is still work in progress
that requires additional research to be carried out and thus will not be addressed any further
in this paper. However this result in itself seems to be remarkable and it may open the road
for future developments in Chern–Simons theory.

Another aspect of the Chern–Simons local variational problem that we shall treat in this
paper is that of infinitesimal symmetries and their associated Noether invariants. Here again
we will adopt a broader point of view. That is, we will study this question not only in the case
of Chern–Simons theory but for any local variational problem of symplectic type. As we
will see, the definition of infinitesimal symmetries is a rather straightforward one. However,
the existence of global Noether invariants is a much more delicate one and it depends on
the vanishing of a certain cohomological obstruction depending only on the infinitesimal
symmetry and the symplectic form of the local variational problem.

With this theory at hand we will prove that the algebra of infinitesimal symmetries of
Chern–Simons theory is infinite dimensional. We will see this by showing that every in-
finitesimal automorphism of the principal bundleP → X gives rise, in a natural way, to an
infinitesimal symmetry. Moreover, taking into account the properties of Hamiltonian struc-
ture associated to the natural symplectic form ofC(P), we will prove that all these infinitesi-
mal symmetries admit a global Noether invariant and we will give their explicit expressions.

The organization of the paper is as follows. InSection 2, in order to fix our notation, we
collect some well known results of the geometric formulation of the calculus of variations.
Section 3is devoted to the definition and study of variational problems defined by local
data. We also recall the necessary facts about the cohomological obstructions that appear
in the global inverse problem of the calculus of variations. InSection 4we apply these
results to the particular aspects of the formulation of Chern–Simons theory as a variational
problem defined by local data.Section 5deals with the problem of defining infinitesimal
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symmetries and Noether invariants for local variational problems. The resulting theory is
applied inSection 6to study the infinitesimal symmetries of Chern–Simons theory.

The study carried out in this paper can be extended to manifolds of arbitrary dimension if
we replace the Chern–Simons form with a higher order transgression class. We will address
this question in future works.

We end this introduction by stating the mathematical conventions that will be assumed
in this paper. Manifolds are supposed to be paracompact, connected andC∞. We will use
without explicit mention the Einstein summation convention.

2. Preliminaries on the geometric formulation of the calculus of variations

There exists a well established geometric formulation of the calculus of variations based
on jet bundle techniques. This framework has been developed by several authors; the reader
may see for instance[10,12,15,18]and the references cited therein.

In order to fix our notation and for the convenience of the reader we proceed in this
section to recall several well known facts of this theory that will be used in the rest of the
paper. Although we shall be concerned with first order variational problems, that is, the ones
defined by Lagrangian densities on the first jet bundle, the structure of the theory requires
us to deal with jet bundles of arbitrary order.

Let π : Y → X be a fibered manifold with dimX = n and dimY = n+m. For any pair
of nonnegative integersl < k we will denote byπkl : JkY → JlY the natural projection
between the corresponding jet bundles of local sections ofπ : Y → X, andπk : JkY → X

will be the projection obtained asπk = π ◦ πk0.
It is well known[17,18] that every jet bundleJkY has a contact structure which allows

one to define the so called contact forms ofJkY . These forms can be defined by means of
the kth order structure formθ(k) which is a one-form onJkY with values on the vertical
bundleVJk−1Y of the projectionπk−1 : Jk−1Y → X. On the other hand we have onJkY the
forms which are horizontal with respect to the projectionπk : JkY → X. We will denote
byΩp,q

JkY
⊂ Ωp+q

JkY
the sheaf of(p+ q)-differential forms onJkY which arep-contact and

q-horizontal.
Starting from the exterior differential[18] one constructs twoR-derivations of degree 1,

the vertical differentialdv and the horizontal differentialdh, which are sheaf morphisms

dv : Ωp,q
JkY

→ (πk+1
k )∗Ω

p+1,q
Jk+1Y

, dh : Ωp,q
JkY

→ (πk+1
k )∗Ω

p,q+1
Jk+1Y

,

where(πk+1
k )∗ denotes the direct image of sheaves under the natural projectionπk+1

k :
Jk+1Y → JkY .

A first order Lagrangian density is a horizontal form of top degree onJ1Y . While it may
not be globally defined, if we want to associate to it a variational problem then its domain
must be of the form(π1

0)
−1(U) for some open setU ⊂ Y . Therefore the sheafLagY of first

order Lagrangians onY is defined as

LagY = (π1
0)∗Ω

0,n
J1Y
,

wheren = dimX.
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A central concept in the formulation of the calculus of variations for first order La-
grangians[12,15,18]is played by the Euler–Lagrange sheaf morphism

E : LagY → (π2
0)∗Ω

1,n
J2Y
,

which is anR-linear sheaf morphism that sends a LagrangianL to its Euler–Lagrange form
E(L) onJ2Y .

Other remarkable geometric objects which are associated to a given LagrangianL (see
[10,12,17]) are the Poincaré–Cartan formΘL and the Legendre formΩL, both defined on
J1Y . They are related by the following expression:

ΘL = L− θ ∧ΩL,

whereθ is the first order structure form.
There is a well known relationship between all these forms[1,18], the so called “first

variation formula”

E(L) = (π2
1)
∗ dΘL + dv(θ ∧ΩL). (1)

This formula allows one to characterize the extremals of a variational problem in two
different ways[1,10,12,18]. A local sections of the projectionπ : Y → X is critical
for the variational problem defined by a Lagrangian densityL if and only if it fulfills the
Euler–Lagrange equation

E(L) ◦ j2s = 0. (2)

Equivalently,s is critical if and only if

(iD dΘL)|
j1s
= 0, ∀D ∈ X(J1Y). (3)

Let us finish this section by recalling the local expressions of the Euler–Lagrange and
Poincaré–Cartan forms that will be used later. We fix a coordinate chart{xα, yi} onU ⊂ Y
adapted to the fibrationπ : Y → X. The Greek indicesα, β, . . . run from 1 ton and
label the coordinates on the base, Latin indicesi, j, . . . run from 1 tom and label the fiber
coordinates. We have natural charts induced onJ1Y andJ2Y that we denote{xα, yi, yiα} and
{xα, yi, yiα, yiαβ}, respectively. If we takeη = dx1 ∧ · · · ∧ dxn then we will haveL = L · η
for someL ∈ C∞((π1

0)
−1(U)) and the local expression of the Euler–Lagrange form is

E(L) =
{
∂L

∂yi
− d

dxα

(
∂L

∂yiα

)}
dyi ∧ η,

where d/dxα is the total derivative with respect toxα on J2Y . In the same way the local
expression of the Poincaré–Cartan form is

ΘL = L+ ∂L

∂yiα
(dyi − yiβ dxβ) ∧ i∂/∂xαη.
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3. Variational problems defined by local data

Local variational problems appear naturally in the study of the inverse problem of the
Calculus of Variations, which deals with the question of deciding whether a system of differ-
ential equations arises as the Euler–Lagrange equations of some Lagrangian. This problem
has been studied and solved by several authors using different techniques, among them we
may cite[1,2,6,19,22]. New ways of attacking these problems have recently appeared, see
[16,23,24].

3.1. Main definitions and properties

In this section we will define and study first order local variational problems in the
framework of the inverse problem of the calculus of variations. Our basic entities will be
Lagrangian densities rather than differential equations. This approach will allow us to give
an equivalent formulation of the inverse problem solely in terms of Lagrangian densities.

We start with the introduction of variational problems defined by local data. LetL =
{Lα ∈ LagY (Uα)}α∈I be a family of local sections ofLagY subordinate to an open cover
U = {Uα}α∈I of Y . We denote byEL = {E(Lα)}α∈I the family of local Euler–Lagrange
forms obtained by applying the Euler–Lagrange morphism to the familyL.

Definition 1. We shall say that{U,L} are the data of a local variational problem if the
family EL = {E(Lα)}α∈I defines a global Euler–Lagrange form, that is

E(Lα)|Uα∩Uβ = E(Lβ)|Uα∩Uβ , ∀α, β ∈ I.
Two local variational data{U,L}, {U′,L′} are equivalent if they define the same Euler–
Lagrange formEL = EL′ . A local variational problem is an equivalence class [{U,L}] of
local variational data.

A local variational problem [{U,L}] is termed global in case there exists a global La-
grangian densityL ∈ H0(Y,LagY ) such thatE(L) = EL.

Given local variational data{U,L} it is clear that the extremals ofLα|Uα∩Uβ
andLβ|Uα∩Uβ

coincide, allowing us to give a coherent definition of the global extremals. Moreover, it
is clear that the extremality condition only depends on the equivalence class [{U,L}].
Therefore, we may give the following definition.

Definition 2. A local sections of π : Y → X is critical for the local variational problem
[{U,L}] if, for everyα ∈ I, s|Uα is critical for the variational problem defined byLα.

The characterizations of the critical sections that we have seen at the end of the previous
section imply the following proposition.

Proposition 1. A local section s is critical for a local variational problem[{U,L}] if and
only if

EL ◦ j2s = 0.
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Equivalently, s is critical if and only if

(iD dΘα)|
j1s
= 0, ∀α ∈ I, ∀D ∈ X(J1Y).

Let L = {Lα ∈ LagY (Uα)}α∈I be a family of sections ofLagY subordinate to an open
coverU = {Uα}α∈I of Y . We denote byΣL = {dΘLα}α∈I the family of differentials of the
local Poincaré–Cartan forms. As a consequence of the first variation formula we have the
following proposition.

Proposition 2. If the familyΣL = {dΘLα}α∈I defines a global(n + 1)-differential form,
that is

(dΘLα)|Uα∩Uβ = (dΘLβ)|Uα∩Uβ , ∀α, β ∈ I,

then{U,L} are the data of a local variational problem.

Proof. If (dΘLα)|Uα∩Uβ = (dΘLβ)|Uα∩Uβ the first variation formula implies the equality

E(Lα)|Uα∩Uβ − E(Lβ)|Uα∩Uβ = dv[(θ ∧ΩLα)|Uα∩Uβ − (θ ∧ΩLβ)|Uα∩Uβ ].

The left hand side of this equation is a one-contact,(n − 1)-horizontal differential form,
whereas the right hand side is a two-contact,(n−1)-horizontal differential form. Therefore
both sides of the equality must vanish identically. �

We can now give the following definition.

Definition 3. We shall say that{U,L} are the data of a local variational problem of sym-
plectic type if the familyΣL = {dΘLα}α∈I defines a global differential form which will be
called the (formal) symplectic form.

Two data of symplectic type{U,L}, {U′,L′} are equivalent ifΣL = ΣL′ . A variational
problem of symplectic type is an equivalence class of local variational data of symplectic
type.

As we have seen above, given two local variational data{U,L}, {U′,L′}, the first variation
formula implies thatEL = EL′ if and only if ΣL = ΣL′ . Therefore it follows that two
local variational data of symplectic type are equivalent if and only if they are equivalent as
ordinary local variational data.

3.2. Global inverse problem

We proceed now to recall the main definitions of the theory that leads to the solution of
the global inverse problem of the calculus of variations. We will use the notation and follow
the approach of[1,2]. The reader is referred to these papers for a thorough explanation of
the concepts used in this section.

Given ap-formω onJkY it is well known that we can define from it a horizontalp-form
ψk+1(ω) on Jk+1Y which is called the horizontalization ofω. The value ofψk+1(ω) at a
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point jk+1
x s ∈ Jk+1Y is

(ψk+1(ω))(j
k+1
x s) = (πk+1)∗((jks∗ω)(x)),

which is well-defined since(jks∗ω)(x) only depends on the(k+ 1)-jet of the local section
s atx ∈ X.

Therefore, for everyk ≥ 0 and 0≤ p ≤ dimX, we have a morphism of sheaves of
graded algebras

ψk+1 : (πk0)∗Ω
p

JkY
→ (πk+1

0 )∗Ω
0,p
Jk+1Y

.

The image of the sheaf(πk0)∗Ω
p

JkY
underψk+1 will be denotedJpk+1. In what follows we

will also use the notationΩpk ≡ (πk0)∗ΩpJkY andΩp,qk ≡ (πk0)∗Ωp,qJkY .
Let us recall, see[18], that the pullback of a contact form under the jet prolongation of a

local section vanishes. Thus, taking into account the definition ofψk+1, it is clear that any
contact form is in the kernel of the horizontalization morphisms.

In order to see the cohomological obstructions that characterize the global inverse problem
we need to introduce two complexes of sheaves. The exterior differential induces a morphism
of sheaves

D : Jpk → Jp+1
k ,

characterized by the propertiesD ◦D = 0 andD ◦ψk = ψk ◦ d. We denote by(J•k,D) the
complex of sheaves

J0
k

D−→J1
k

D−→· · · → Jn−1
k

D−→Ω0,n
k

E−→E2k → 0,

whereE2k is the image sheaf of the Euler–Lagrange morphism. Let(Ω•k, d) be the complex

Ω0
k

d−→Ω1
k

d−→· · · → Ωn−1
k

d−→Ωnk
d−→Zn+1

k → 0,

whereZn+1
k ≡ Ker(Ωn+1

k −→d Ωn+2
k ).

It is a classical fact that the Poincaré lemma implies that the complex(Ω•k, d) is a resolution
of the constant sheafR onY . However, it is a deep result, proved in[1], that the complex
(J•k,D) is also a resolution of the same sheaf. Moreover, there exists a unique mapχk :
Zn+1
k−1 → E2k such that the following diagram is commutative:

That is, we have a morphism of resolutionsψk : (Ω•k−1, d)→ (J•k,D). These morphisms
are compatible with the natural inclusions(Ω•k, d) ↪→ (Ω•k+1, d) induced by pulling back
forms. Therefore one has a commutative diagram of complexes
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An important consequence of this diagram, which follows from the abstract De Rham theo-
rem, is that the cohomologyH•(Y,R) can be computed by means of any of the resolutions
(Ω•k, d).

Let us consider the exact sequence 0→ Hk → Ωnk −→E E2k → 0, whereHk is the kernel
of the Euler–Lagrange morphismE. We will denote byδ : H0(Y, E2k) → H1(Y,Hk) the
connecting homomorphism of the long exact sequence of cohomology associated with this
short exact sequence. The following theorem, proved in[1], characterizes the cohomological
obstructions that appear in the global inverse problem of the calculus of variations.

Theorem 1. LetT ∈ H0(Y, E2k) be a kth order, locally variational operator on Y:

(i) T is globally variational, that isT = E(L) for someL ∈ H0(JkY,Ω
0,n
JkY
), if and only

if δ(T) = 0.
(ii) Associated to eachT ∈ H0(Y, E2k) there is a closed(n+ 1)-formωT in JkY such that

δ(T) = 0 if and only if the cohomology class[ωT ] ∈ Hn+1(JkY,R) vanishes. More
concretely, there is a commutative diagram

whereE(Jnk+1) ⊃ E2k is the image of the sheafJnk+1 under the Euler–Lagrange
morphism, and[ ] is the map that takes a closed form to its cohomology class.

3.3. Cohomological obstructions for local variational problems of symplectic type

We now apply these techniques to prove our main result in the case of local variational
problems of symplectic type. That is, we give an explicit expression for the cohomological
obstruction which characterizes whether a local variational problem of this type is global.

Theorem 2. Let{U,L} be the data of a local variational problem of symplectic type. Then

1. ΣL ∈ Zn+1
DR (J

1Y), whereZn+1
DR (J

1Y) denotes the De Rham(n+ 1)-cocycles.
2. The variational problem[{U,L}] is global if and only if the cohomology class[ΣL] ∈
Hn+1(J1Y,R) vanishes.

3. If [ΣL] = 0 then there existsL ∈ H0(Y,LagY ) such thatE(L) = EL andΣL = dΘL.

Proof. The first part is obvious from the definition ofΣL.
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We now proceed to prove the second assertion. It is clear that the Euler–Lagrange form
EL ∈ H0(Y, E2k) is a locally variational operator. Therefore the hypotheses ofTheorem 1
hold.

Let us consider the commutative diagram

The pullback of forms(π4
2)
∗ : Ω1,n

2 → Ω
1,n
4 induces a natural inclusion ofE2 in E4. Thus

the obstruction classδ(EL) for the existence of a global Lagrangian is determined by the
cohomology class of anyω ∈ H0(Y, Zn+1

1 ) such thatχ2(ω) = (π4
2)
∗(EL). SinceZn+1

1 is
a quotient sheaf, to giveω is equivalent to finding an open coverU = {Uα}α∈I of Y and
differential formsΘα ∈ Ωn1(Uα) such that

ω|Uα = dΘα, ∀α ∈ I,
and

(dΘα)|Uα∩Uβ = (dΘβ)|Uα∩Uβ , ∀α, β ∈ I.

The conditionχ2(ω) = (π4
2)
∗(EL) is fulfilled if and only if

E(ψ2(Θα)) = (π4
2)
∗(EL|Uα ).

If we take asΘα the local Poincaré–Cartan formΘLα = Lα − θ ∧ΩLα it is clear that the
family {ΘLα}α∈I fulfills the second condition. On the other hand,Lα is horizontal and the
horizontalization ofθ ∧ ΩLα vanishes since it is a one-contact,n-horizontal differential
form, hence

ψ2(ΘLα) = ψ2(Lα) = (π2
1)
∗(Lα),

which in turn implies

E(ψ2(ΘLα)) = E((π2
1)
∗Lα) = (π4

2)
∗(E(Lα))

as required. Hence we may takeω = ΣL as we wanted to prove.
The last part of the theorem follows immediately from the previous ones. �

Remark 1. Let us note that sinceJ1Y is a deformation retract ofY the obstruction to the
existence of a global Lagrangian lives inHn+1(Y,R).

If we take into accountProposition 1we can now characterize the critical sections in
terms ofΣL.

Proposition 3. A local section s is critical for a local variational problem[{U,L}] of
symplectic type if and only if

(iDΣL)|
j1s
= 0, ∀D ∈ X(J1Y).
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4. Chern–Simons theory

LetG be an arbitrary Lie group and let〈#, 〉 : g⊗ g→ R be an Ad-invariant metric in
the Lie algebra ofG, and letω be a connection on theG-bundleπ : P → X with curvature
Ωω. Let 〈Ωω ∧ Ωω〉 be the Chern–Weil four-form associated with the metric〈#, 〉. This
form is the lifting of a four-form onX that we continue to denote by〈Ωω ∧ Ωω〉. The
Chern–Simons form is a primitive of〈Ωω∧Ωω〉 onP , more precisely we have the following
definition.

Definition 4. The Chern–Simons form of the connectionω is the three-form

CS(ω) = 〈ω ∧Ωω〉 − 1
6〈ω ∧ [ω,ω]〉 ∈ Ω3(P).

We now state the principal properties of the Chern–Simons form; the proofs can be found
in [8].

Proposition 4. The Chern–Simons form has the following properties:

1. dCS(ω) = 〈Ωω ∧Ωω〉.
2. R∗gCS(ω) = CS(ω), for everyg ∈ G.
3. If ϕ : P → P is a gauge transformation with associated mappingϕ̂ : P → G, then

ϕ∗CS(ω) = CS(ω)+ d〈Adϕ̂−1 ω ∧ θ̂〉 − 1
6〈θ̂ ∧ [θ̂, θ̂]〉,

whereθ̂ = ϕ̂∗θ andθ is the Maurer–Cartan form of G.

4.1. The bundle of connections and the Chern–Simons morphisms

The bundle of connectionsC(P) of a principal bundleP → X was introduced for the
first time in the paper[9] where its basic properties were studied. The natural symplectic
structure ofC(P) was introduced later in[11]. A more recent exposition of the geometry
of C(P) with a particular study of the symplectic structure and its attached Hamiltonian
structure can be found in[5].

In order to establish our notation let us recall the definition and main properties of the
bundle of connections. The reader may consult[5] for further details.

Let us recall that given a principalG-bundleπ : P → X one has the so called Atiyah
sequence, see[3], which is the exact sequence of vector bundles overX

0→ adP → TGP
π∗−→TX→ 0,

where adP is the adjoint bundle andTGP is the vector bundle obtained as the quotient of
TP under the natural action of the Lie groupG.

There exists a natural bijection between connections onP and splittings of the Atiyah
sequence. Therefore the bundle of connectionsπ̄ : C(P) → X is defined as the affine
sub-bundle of Hom(TX, TGP)modeled on the vector bundle Hom(TX,adP)and determined
by all theR-linear mappingsωx : TxX→ TGPx such thatπ∗ ◦ ωx = IdTxX.
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Let us denote bȳπ1
0 : J1C(P)→ C(P) the one-jet bundle of̄π : C(P)→ X. LetU ⊂ X

be a trivializing open set ofP with trivializationϕU : PU −→∼ U ×G and letsU : U → PU
be its corresponding local section. We denote alsoC(P)U = (π̄)−1(U).

Definition 5. The Chern–Simons morphism associated with the trivializationϕU : PU −→∼ U×
G is the mapping

J1C(P)|C(P)U
CSU−→

3∧
T ∗XU,

defined by CSU(j1
xω) = s∗U(CS(ωx)) ∈

∧3
T ∗x X.

Remark 2. CSU : J1C(P)|C(P)U →
∧3
T ∗XU is a fibered morphism overU ⊂ X. Thus,

CSU is a local section of the sheaf of LagrangiansLagC(P).

In order to give the local expression of a Chern–Simons morphism, let us remember
that if ϕU : PU −→∼ U × G is a local trivialization on an open setU ⊂ X endowed with
local coordinates{xi}, andDα are theG-invariant vector fields onPU defined by a basis
B = {B1, . . . , Bm} of the Lie algebrag, then we can define onC(P)U the functionsAαi by
means of

Hω

(
∂

∂xi

)
= ∂

∂xi
− Aαi (ω)Dα, ω ∈ Γ(U,C(P)U),

whereHω is the horizontal lift associated with the connectionω. Then, see[11], the functions
{xi, Aαi }define a local fibered coordinate system onC(P)U . We shall denote by{xi, Aαi , Aαi,j}
the coordinate system induced onJ1C(P)|C(P)U .

From now on we suppose thatX is a manifold of dimension 3.

Proposition 5. The local expression ofCSU , with respect to the coordinate system
{xi, Aαi , Aαi,j}, is CSU = LCS

U · dx1 ∧ dx2 ∧ dx3 with

LCS
U = εijk(Aαi Aβk,j + 1

3C
β
µνA

α
i A
µ
j A

ν
k)〈Bα ⊗ Bβ〉,

whereCβµν are the structure constants of the Lie algebrag with respect to the basisB.

Proof. Let us denote by{ωα} the dual basis of the basis ofG-invariant vector fields{Dα}.
Now the expression of a connection onPU isω = (Aαi dxi+ωα)⊗Dα, where, for shortness,
we have writtenAαi instead ofAαi (ω). Therefore

CSU ◦ j1ω = 〈ωU ∧ΩωU〉 − 1
6〈ωU ∧ [ωU,ωU ]〉

with ωU = s∗Uω ∈ Ω1(U, g). Taking into account thatωU = s∗Uω = Aαi dxi ⊗ Bα, one has
ΩωU = (1/2)Fαij dxi ∧ dxj ⊗ Bα with Fαij = Aαj,i − Aαi,j + CαµνAµi Aνj . If we substitute this
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result in the expression of CSU ◦ j1ω we obtain

CSU ◦ j1ω= 〈(Aαi dxi ⊗ Bα) ∧ ((1/2)(Aβk,j − Aβj,k + CβµνAµj Aνk)dxj ∧ dxk ⊗ Bβ)〉
− 1

6〈(Aαi dxi ⊗ Bα) ∧ [(Aµj dxj ⊗ Bµ), (Aνk dxk ⊗ Bν)]
= (Aαi Aβk,j + 1

3C
β
µνA

α
i A
µ
j A

ν
k)〈Bα ⊗ Bβ〉dxi ∧ dxj ∧ dxk,

which finishes the proof. �

We are interested now in comparing the Chern–Simons morphisms associated with two
different local trivializations ofP . As a consequence of part 3 ofProposition 4one has the
following proposition.

Proposition 6. Let ϕU and ϕV be two local trivializations ofπ : P → X. For every
ω ∈ Γ(U ∩ V,C(P)) one has

(CSV − CSU) ◦ j1ω = d〈AdgUV−1ωU ∧ θUV〉 − 1
6〈θUV ∧ [θUV, θUV]〉,

wheregUV is the transition function, θUV = g∗UVθ andθ is the Maurer–Cartan form of G.

Corollary 1. OnC(P)U∩V , with respect to the coordinate system{xi, Aαi , Aαi,j}, one has

LCS
V − LCS

U = εijk
(
A
µ
i,kρ

α
µθ
β
j + Aµi

∂

∂xk
(ραµθ

β
j )−

1

6
Cβµνθ

α
i θ
µ
j θ
ν
k

)
〈Bα ⊗ Bβ〉,

whereθαi , ραµ ∈ C∞(U ∩ V) are the functions determined byθUV = θαi dxi ⊗ Bα and
AdgUV−1 (Bµ) = ραµBα, respectively.

4.2. Chern–Simons theory as a local variational problem

In what follows we will see that the Euler–Lagrange operators associated with the
Chern–Simons morphisms agree in the intersection of their domains of definition.

Lemma 1. Let E : LagC(P) → (π̄2
0)∗Ω

1,3
J2C(P)

be the Euler–Lagrange morphisms. On
C(P)U∩V one has

E(CSU) = E(CSV ).

Proof. LetL = CSV − CSU , thenE(CSV )− E(CSU) = E(L). In the coordinate system
{xi, Aαi , Aαi,j}, one hasL = Lη, with L = LCS

V − LCS
U andη = dx1 ∧ dx2 ∧ dx3. The

expression of the Euler–Lagrange operator in this system of coordinates is

E(L) =
{
∂L

∂Aαi
− d

dxk

(
∂L

∂Aαi,k

)}
dAαi ∧ η.

But if we take into accountCorollary 1, we obtain
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∂L

∂Aαi
= εijk ∂

∂xk
(ρµα θ

ν
j )〈Bµ ⊗ Bν〉,

d

dxk

(
∂L

∂Aαi,k

)
= d

dxk
(εijkρµα θ

ν
j 〈Bµ ⊗ Bν〉) = εijk

∂

∂xk
(ρµα θ

ν
j )〈Bµ ⊗ Bν〉,

thusE(L) = 0 and we conclude the proof. �

According to the definition of a local variational problem given inDefinition 1we have
thus proved the following proposition.

Proposition 7. LetUX = {Uα}α∈I be a cover of X by open trivializing sets ofπ : P → X,
and letU = π̄−1(UX) be the corresponding cover ofC(P). LetLCS= {CSUα}α∈I , one has

1. {U,LCS} are the data of a local variational problem.
2. The classCS(P) = [{U,LCS}] does not depend on the chosen coverUX.

Hence, we can give the following definition.

Definition 6. We shall say that CS(P) is the local variational problem for the Chern–Simons
theory of the bundleπ : P → X.

Moreover, one can prove the following theorem.

Theorem 3. The local variational problemCS(P) is of symplectic type.

Proof. We will use the same notation as in the proof ofLemma 1. Thus, it is enough to
prove that dΘL = 0. But, with respect to the local coordinate system, one has

ΘL =L+ ∂L

∂Aαi,k
(dAαi − Aαi,r dxr) ∧ i∂/∂xkη

=L+ εijkρµα θνj 〈Bµ ⊗ Bν〉(dAαi − Aαi,r dxr) ∧ i∂/∂xkη.

Hence

dΘL = dL+ εijk〈Bµ ⊗ Bν〉{d(ρµα θνj ) ∧ (dAαi − Aαi,r dxr) ∧ i∂/∂xkη− ρµα θνj dAαi,k ∧ η}

= dL− εijk〈Bµ ⊗ Bν〉
{
∂

∂xk
(ρµα θ

ν
j )dA

α
i + ρµα θνj dAαi,k

}
∧ η.

But

dL = dL ∧ η = εijk〈Bµ ⊗ Bν〉
{
ρµα θ

ν
j dAαi,k +

∂

∂xk
(ρµα θ

ν
j )dA

α
i

}
∧ η,

therefore dΘL = 0. �
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The bundle of connectionsC(P) has a symplectic structureΩ2 ∈ Ω2(C(P), π̄∗adP)
with values in the adjoint bundle adP , which is just the two-form induced onC(P) by
the curvature two-form of the canonical connection onJ1P → C(P) by means of the
identificationC(P) � J1P/G, see[5,11]. Therefore, ifϕU : PU −→∼ U × G is a local
trivialization of P andU is coordinated by{xi}, the expression ofΩ2 in the coordinate
system{xi, Aαi } induced onC(P)U is

Ω2 = (dAαi ∧ dxi + 1
2C

α
µνA

µ
j A

ν
k dxj ∧ dxk)⊗Dα,

where {Dα} is the basis ofG-invariant vector fields onPU , and hence a basis of
Γ(C(P)U, π̄

∗adP), associated with the basis of the Lie algebrag chosen to construct the
coordinate system{xi, Aαi }. For further details see[5,11] andSection 6of this paper.

On the other hand, the curvature morphism is the fibered mapping overX

Ω : J1C(P)→
2∧
T ∗X⊗ adP

given byΩ(j1
xω) = (Ωω)x. Hence its local expression is

Ω = 1
2F

α
ij dxi ∧ dxj ⊗Dα = 1

2(A
α
j,i − Aαi,j + CαµνAµi Aνj)dxi ∧ dxj ⊗Dα.

The symplectic structureΩ2 of C(P) and the curvature morphismΩ will allow us to
intrinsically express the Euler–Lagrange formELCS ∈ Ω4(J2C(P)) and the formΣLCS ∈
Ω4(J1C(P)) associated with the local variational problem of symplectic type CS(P).

Theorem 4. One has

ELCS = 2(π̄2
1)
∗〈(π̄1

0)
∗Ω2 ∧Ω〉, ΣLCS = (π̄1

0)
∗〈Ω2 ∧Ω2〉.

That is,ΣLCS is the pullback toJ1C(P)of the four-form induced on the bundle of connections
C(P) by the Chern–Weil four-form of the canonical connection.

Proof. Let us choose a local trivializationϕU : PU −→∼ U×G. As we have seen inProposition
5, with respect to the local coordinate system{xi, Aαi , Aαi,j} one has CSU = LCS

U · η with

LCS
U = εijk(Aαi Aβk,j + 1

3C
β
µνA

α
i A
µ
j A

ν
k)〈Bα ⊗ Bβ〉,

andη = dxi ∧ dxj ∧ dxk.
Therefore, we have

ELCS
|U
=
{
∂LCS
U

∂Aαi
− d

dxk

(
∂LCS
U

∂Aαi,k

)}
dAαi ∧ η

= εijk〈Bα ⊗ Bβ〉(Aβk,j − Aβj,k + CβµνAµj Aνk)dAαi ∧ η
= 〈Bα ⊗ Bβ〉Fβjk dAαi ∧ dxi ∧ dxj ∧ dxk

= 2

〈
(dAαi ∧ dxi ⊗Dα) ∧

(
1

2
F
β

jk dxj ∧ dxk ⊗Dβ
)〉
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if we take into account the local expressions ofΩ2 andΩ we finish the proof of the first
part.

In the same way

ΘCSU =CSU + ∂L
CS
U

∂A
β

k,j

(dAβk − Aβk,r dxr) ∧ i∂/∂xjη

=CSU + εijk〈Bα ⊗ Bβ〉Aαi (dAβk − Aβk,r dxr) ∧ i∂/∂xjη
=CSU + εijk〈Bα ⊗ Bβ〉Aαi (dAβk ∧ i∂/∂xjη− Aβk,jη)

= εijk〈Bα ⊗ Bβ〉Aαi
(

1

3
CβµνA

µ
j A

ν
kη+ dAβk ∧ i∂/∂xjη

)
.

Taking the exterior differential, after a little computation, bearing in mind that〈#, 〉 is
Ad-invariant, we obtain

dΘCSU = 〈Bα ⊗ Bβ〉dAαi ∧ dxi ∧ (dAβj ∧ dxj + CβµνAµj Aνkdxj ∧ dxk)

= 〈(dAαi ∧ dxi ⊗Dα) ∧ {(dAβj ∧ dxj + CβµνAµj Aνk dxj ∧ dxk)⊗Dβ}〉,
and the local expression ofΩ2 allows us to finish the proof. �

The expression found for the Euler–Lagrange operator allows us to characterize the
critical sections.

Corollary 2. A connectionω ∈ Γ(X,C(P)) is critical for the variational problemCS(P)
if and only if it is zero the component of its curvature form corresponding to the subspace
of g where〈#, 〉 is nondegenerate. If〈#, 〉 is nondegenerate, ω is critical if and only it is a
flat connection.

The inverse problem of the Calculus of Variations,Theorem 2, allows us to prove the
following corollary.

Corollary 3. There exists a global sectionLCS ∈ H0(C(P),LagC(P)) such thatE(LCS) =
ELCS andΣLCS = dΘLCS.

Proof. Sinceπ̄ : C(P) → X is an affine bundle andX has dimension 3 it follows that
H4(C(P),R) = 0, therefore [ΣLCS] = 0. Hence, applyingTheorem 2we obtain the
result. �

Remark 3. The local solution of the inverse problem of the calculus of variations provides
us with an algorithm which determines only the local expression of a Lagrangian whose
Euler–Lagrange equations are the given ones. When applied in this case we recover the
Chern–Simons morphism CSU of the open set in which we are working on. Therefore
the inverse problem of the calculus of variations does not help us in finding the explicit
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expression ofLCS. According to the best of our knowledge, the existence of the global
LagrangianLCS is not found in the literature.

5. Infinitesimal symmetries and Noether invariants

The topic that we will address in this section is that of infinitesimal symmetries and
Noether invariants of variational problems defined by local data.

5.1. Global variational problems

An infinitesimal symmetry of the first order variational problem defined by a Lagrangian
densityL is a vector fieldD ∈ X(J1Y) such that the Lie derivative of the Poincaré–Cartan
formΘL with respect toD is an exact form, that is

LDΘL = −dηD.

In that case, we haveiD dΘL = −dωD with ωD = iDΘL + ηD. Noether’s theorem can
now be formulated as follows. Lets be a critical section; taking into account the second
characterization of critical sections given inEq. (3), we have

0= (iD dΘL)|
j1s
= −d(ωD)|

j1s
.

That is,ωD is a closed(n − 1)-form alongj1s(X) ⊂ J1Y , or what amounts to the same,
(j1s)∗ωD is a closed differential form onX.

From its definition it is clear thatωD is determined up to the addition of any closed
(n− 1)-form onJ1Y . The Noether invariant associated with the infinitesimal symmetryD

is the coset of(n− 1)-differential forms

ωD = iDΘLωD + ηD + Zn−1
DR (J

1Y),

whereZn−1
DR (J

1Y) is the space of De Rham(n− 1)-cocycles onJ1Y .

5.2. Local variational problems of symplectic type

In what follows we will consider the problem of defining infinitesimal symmetries and
their associated Noether invariants for local variational problems of symplectic
type.

Definition 7. Let {U,L} be the data of a local variational problem. We shall say that
D ∈ X(J1Y) is an infinitesimal symmetry of the variational problem [{U,L}] if, for every
α ∈ I,D|

(π1
0)
−1(Uα)

is an infinitesimal symmetry of the variational problem associated with

Lα. That is, one has

LDΘα = −dηαD

with Θα = ΘLα andηαD ∈ (π1
0)∗Ω

n−1
J1Y
(Uα).
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The local Noether invariant associated with the infinitesimal symmetryD onUα is the
coset

ωαD = iD̄Θα + ηαD + (π1
0)∗Z

n−1
J1Y
(Uα),

whereZn−1
J1Y

is the sheaf of De Rham(n− 1)-cocycles onJ1Y .

One has the following proposition.

Proposition 8. If D ∈ X(Y) is an infinitesimal symmetry of the local variational problem
associated with{U,L}, then{ωαD}α∈I defines an element

[ωD] ∈ H0

(
J1Y,

Ωn−1
J1Y

Zn−1
J1Y

)
.

Proof. It is clear thatiD dΘα = −dωαD. Since the variational problem is of symplectic type
we have

(dΘLα)|Uα∩Uβ = (dΘLβ)|Uα∩Uβ , ∀α, β ∈ I,
and this implies

d(ωαD − ωβD)|Uα∩Uβ = 0.

That is (ωαD − ωβD)|Uα∩Uβ ∈ Z
n−1
J1Y
((π1

0)
−1(Uα) ∪ (π1

0)
−1(Uα)). Taking into account that

(π1
0)
−1U is a cover ofJ1Y the proof is finished. �

If there exists a global Noether invariant then it is clear from the definition that it is
defined up to the addition of any closed(n− 1)-form onJ1Y .

Definition 8. LetD ∈ X(Y) be an infinitesimal symmetry of the local variational problem
[{U,L}]. The element

[ωD] ∈ H0

(
J1Y,

Ωn−1
J1Y

Zn−1
J1Y

)

is called the virtual Noether invariant associated withD. We shall say thatD admitsωD ∈
H0(J1Y,Ωn−1

J1Y
) as a global Noether invariant if its image inH0(J1Y,Ωn−1

J1Y
/Zn−1
J1Y
) is [ωD].

Noether’s theorem is also valid for symmetries which admit a global Noether invariant

Theorem 5. If D is an infinitesimal symmetry with a global Noether invariantωD, then for
every critical section s one has

d(ωD)|
j1s
= 0,

thus(j1s)∗ωD ∈ Zn−1(X).
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Proof. OnUα one hasiD̄ dΘα = −dωαD = −dωD|Uα . Sinces is critical the result follows
immediately fromProposition 1. �

The following proposition is important since it allows us to manage infinitesimal symme-
tries and their Noether invariants in a practical way. First we give a useful representation of
the virtual Noether invariant in terms of an ordinary differential form rather than a section
of a quotient sheaf. As a consequence we are also able to exhibit an explicitly computable
criterion for the existence of global Noether invariants.

Proposition 9. LetD ∈ X(Y) be an infinitesimal symmetry of the local variational problem
[{U,L}]
1. The virtual Noether invariant[ωD] associated with D gets identified withξD = −iD̄ΣL ∈
H0(J1Y,Zn

J1Y
) = ZnDR(J

1Y).
2. D admits global Noether invariants if and only if the cohomology class[iD̄ΣL] ∈
Hn(J1Y,R) vanishes. That is, if and only if there existsωD ∈ Ωn−1(J1Y) such that
iD̄ΣL = −dωD. In that case, the set of global Noether invariants associated with D is
the class

ζD = ωD + Zn−1
DR (J

1Y),

that is, ζD ∈ Ωn−1(J1Y)/Zn−1
DR (J

1Y) � BnDR(J
1Y).

Proof. The De Rham resolution onJ1Y gives us the short exact sequence of sheaves

0→ Zn−1
J1Y

→ Ωn−1
J1Y

→ Zn
J1Y

→ 0.

ThereforeΩn−1
J1Y
/Zn−1
J1Y

� Zn
J1Y

and [ωD] = {ωαD}α∈I gets identified with

{dωαD}α∈I = −{iD̄ dΘα}α∈I = −iD̄ΣL,
which proves the first part.

If we take cohomology in the above short exact sequence and we take into account that
Ωn−1
J1Y

is an acyclic sheaf, we obtain an exact sequence

0→ H0(J1Y,Zn−1
J1Y
)→ H0(J1Y,Ωn−1

J1Y
)→ H0(J1Y,Zn

J1Y
)
δ−→H1(J1Y,Zn−1

J1Y
)→ 0.

Hence it is clear thatD admits a global Noether invariant if and only ifδ(iD̄ΣL) = 0. By
the abstract De Rham’s theorem[25], we have

H1(J1Y,Zn−1
J1Y
) � Hn(J1Y,R),

andδ(iD̄ΣL) gets identified with the assignment of the cohomology class

[iD̄ΣL] ∈ Hn(J1Y,R).

The rest of the theorem is a straightforward consequence of the cohomology exact
sequence. �
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Remark 4. The obstruction to the existence of global Noether invariants lives inHn(Y,R).

We can now give a cohomological characterization of the infinitesimal symmetries and
in particular of those which admit global Noether invariants.

Theorem 6. Given a vector fieldD ∈ X(J1Y) one has

1. D is an infinitesimal symmetry of the local variational problem[{U,L}] if and only if

iDΣL ∈ H0(J1Y,Zn
J1Y
) = ZnDR(J

1Y).

Equivalently, D is an infinitesimal symmetry if and only if

LDΣL = 0.

2. D is an infinitesimal symmetry that admits global Noether invariants if and only if the
cohomology class[iDΣL] ∈ Hn(J1Y,R) vanishes.

Proof. If D is an infinitesimal symmetry the previous proposition implies thatiD̄ΣL is a
closed form. In order to prove the converse statement we can assume, without changing
the class of the variational problem [{U,L}], that U is a good cover ofY . This is not a
real restriction since on every (paracompact) manifold we can construct a good cover out
of the geodesically convex neighborhoods associated with a Riemannian metric, see[4].
Therefore every open setUα is contractible and as a consequence there existsωαD such that

−dωαD = (iDΣL)|Uα = iD dΘLα,

which implies thatD is an infinitesimal symmetry. The equivalence with the condition
LDΣL = 0 follows from the fact thatΣL is closed.

The second part of the theorem is a direct consequence of the first one and the preceding
proposition. �

We end this section with a theorem that gives the structure of the set of infinitesimal
symmetries.

Theorem 7. One has that

1. The setD of infinitesimal symmetries of a local variational problem is a Lie subalgebra
ofX(J1Y).

2. The setD0 of infinitesimal symmetries which admit a global Noether invariant is an
ideal ofD, that is

[D,D] ⊂ D0.

Moreover, by sending an infinitesimal symmetry D to the cohomology class[ξD] ∈
Hn(J1Y,R) of its virtual Noether invariant we get a natural inclusion of the quotient
Lie algebra

D

D0
⊂ Hn(J1Y,R) � Hn(Y,R).
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Proof. The first statement follows immediately from the previous theorem just by taking
into account the well known identityL[D1,D2] = [LD1, LD2].

On the other hand, ifD1 andD2 are two infinitesimal symmetries, we have

ξ[D1,D2] = −i[D1,D2]ΣL = −[iD1, LD2]ΣL = LD2iD1ΣL = d(iD2iD1ΣL).

Moreover, it is clear that the sum and product with a scalar preservesD0. �

Corollary 4. LetD1 andD2 be two infinitesimal symmetries belonging toD0, then

ω[D1,D2] = iD2iD1ΣL

is a global Noether invariant for[D1,D2].

6. Symplectic structure of C(P) and infinitesimal symmetries of Chern–Simons
theories

In this section we will see that the symplectic structure ofC(P) allow us to associate to
everyG-invariant vector field onP an infinitesimal symmetry of the variational problem
CS(P). Proving thus, that the Lie algebra of infinitesimal symmetries of Chern–Simons
theories is infinite dimensional. In order to see the connection between the symplectic
structure ofC(P) and the infinitesimal symmetries of Chern–Simons theories we briefly
recall the relationship between the bundle of connectionsπ̄ : C(P) → X and the one-jet
bundleπ1

0 : J1P → P of the principal bundleπ : P → X, a complete exposition can be
found in[5,9,11].

As is well known[14], every automorphismϕ ∈ AutP of the principal bundleπ :
P → X acts on the connections ofP , producing a diffeomorphismϕc : C(P) → C(P).
If D ∈ Γ(X,autP) is aG-invariant vector field onP , then it is called an infinitesimal
automorphism ofP , since its uniparametric group{τt} acts by automorphisms ofP . Thus,
{τct } is a uniparametric group of diffeomorphisms ofC(P) whose infinitesimal generator
will be denoted byDc. In this way the natural action of the automorphisms AutP of the
principal bundle on the connections ofP induces a Lie algebra morphism

autP → X(C(P)), D→ Dc.

The groupG acts freely on the right onJ1P and the quotient manifoldJ1P/G exists and
gets identified with the bundle of connectionsC(P), see[9], in such a way that the following
diagram is commutative:

Thusq : J1P → C(P) is a principalG-bundle, whereq is the natural quotient map. More-
over, J1P is isomorphic, as a principalG-bundle, to the pullback ofP to C(P), that is
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J1P � π̄∗P = C(P) ×X P . It follows that we can identify the adjoint bundle adJ1P of
q : J1P → C(P) with π̄∗adP .

On the other hand, every automorphismϕ ∈ AutP lifts in a natural way to an automor-
phismϕ1 : J1P → J1P , and the following diagram is commutative:

Moreover, ifD ∈ autP and we denote bȳD ∈ X(J1P) its prolongation toJ1P , thenD̄ is
q-projectable and its projection isDc.

The structure formθ of J1P turns out to be a principal connection on the bundleq :
J1P → C(P). θ is called the canonical connection. The symplectic formΩ2 of C(P) is the
two-form with values in adJ1P � π̄∗adP induced by the curvatureΩθ of the canonical
connection, and everyD ∈ autP fulfills LD̄θ = 0.

If ϕ ∈ AutP , then one hasϕ1∗θ = θ and thus everyD ∈ Γ(X,autP) satisfiesLD̄θ = 0.
As the following lemma shows, this property of theG-invariant vector fields will be crucial
for obtaining infinitesimal symmetries of Chern–Simons theories.

Lemma 2. Let π̂ : P̂ → X̂ a principal bundle and let̂ω be a principal connection on̂P .
Let D̂ ∈ autP̂ with π̂-projectionD ∈ X(X̂). If L

D̂
ω̂ = 0 then

iDΩω̂ = −d∇(D̂v),
whereΩω̂ ∈ Ω2(X̂,adP̂) is the two-form induced by the curvature form ofω̂, D̂v is the
vertical component of the vector fieldD̂with respect tôω andd∇ is the covariant differential
induced byω̂ on the sections ofadP .

Proof. On P̂ one has

i
D̂
Ωω̂ = i

D̂
(dω̂ + 1

2[ω̂, ω̂]) = i
D̂

dω̂ + 1
2[i
D̂
ω̂, ω̂] − 1

2[ω̂, i
D̂
ω̂])

=−di
D̂
ω̂ − [ω̂, i

D̂
ω̂],

where we have taken into account thatL
D̂
ω̂ = 0. SinceD̂ isG-invariantω̂(D̂) ∈ C∞(P, g)

is Ad-invariant. Therefore it can be identified with a sectionD̂v ∈ Γ(X̂,adP̂) which
is the vertical component of the vector field̂D with respect to the connection
ω̂. Bearing in mind the expression of the covariant derivative in terms of differential
forms in Ω•(P̂, g)B, that is the ones which are horizontal and Ad-equivariant, we
obtain

i
D̂
Ωω̂ = −(di

D̂
ω̂ + [ω̂, ω̂(D̂)]) = −dω̂(ω̂(D̂)),

and we conclude just by taking the one-form onX̂ with values in ad̂P that corresponds
to it. �
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If we apply this lemma to the canonical connectionθ on the principal bundleq : J1P →
C(P) we can prove that for every vector fieldD ∈ autP the vector fieldDc ∈ X(C(P)) is
an infinitesimal symmetry of the Chern–Simons theory.

GivenD ∈ autP , we will denote byD̄v = θ(D̄) the vertical component, with respect to
the canonical connectionθ, of the one-jet prolongation of the vector fieldD. Under these
conditions we have the following proposition.

Proposition 10. LetD ∈ autP , then

1. Dc ∈ X(C(P)) is an infinitesimal symmetry of the variational problemCS(P). That
is, Dc belongs to the Lie algebraD(CS(P)) of the infinitesimal symmetries which are
π̄-projectable.

2. Dc admitsωDc = 2(π̄1
0)
∗〈D̄v ∧ Ω2〉 as a global Noether invariant. That is, Dc ∈

D0(CS(P)).

Therefore we have a Lie algebra morphism

autP → D0(CS(P)), D→ Dc,

whose kernel coincides with the center ofg.

Proof. If we denote byDc ∈ X(J1C(P)) the one-jet prolongation ofDc, then we have

iDcΣLCS = iDc{(π̄1
0)
∗〈Ω2 ∧Ω2〉} = (π̄1

0)
∗{iDc〈Ω2 ∧Ω2〉} = 2(π̄1

0)
∗{〈iDcΩ2 ∧Ω2〉}.

By the previous lemmaiDcΩ2 = −d∇D̄v and thus

iDcΣLCS = −2(π̄1
0)
∗{〈d∇D̄v ∧Ω2〉} = −2(π̄1

0)
∗ d〈D̄v ∧Ω2〉,

where the last equality is a consequence of the Bianchi identityd∇Ω2 = 0. Regarding the
last assertion, ifDc = 0 it is clear thatD ∈ autP is π-vertical.

Finally the proof that the kernel coincides with the center ofg is rather straightforward,
see[11]. �

Remark 5. Therefore, the algebraD0(CS(P)) of the infinitesimal symmetries of CS(P)
which admit global Noether invariants is infinite dimensional. Moreover, the Noether in-
variants associated with the representation of the gauge vector fields are not zero, because
if D ∈ gauP thenθ(D̄) ∈ gauJ1P gets identified withD itself via the natural inclusion
gauP ↪→ gauJ1P and thusD̄v = D, which implies that the global Noether invariant is
ωDc = 2(π̄1

0)
∗〈D ∧Ω2〉.
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